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Field description and electron acceleration
of focused flattened Gaussian laser beams
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Abstract. – By using the superposition of N suitably weighted Laguerre-Gaussian beams, the
analytical expressions of all six electromagnetic field components of focused Flattened Gaussian
Beams (FGBs) are obtained in the Lorentz gauge. The phase velocity distributions of the field
near the focus of FGBs propagating in vacuum are investigated. There exists a subluminous
wave phase velocity region surrounding the laser beam axis. We further apply this focused FGB
to vacuum laser acceleration. As with the focused Standard Gaussian Beam (SGB), electrons
injected into the focused FGB can be captured in the acceleration phase and then violently
accelerated.

In recent years, the rapid development of intense laser technology [1] has stimulated the
creation of many frontier research areas [2]. Among them, the laser acceleration of electrons
has received wide attention [3–6]. In our previous works, a unique vacuum laser acceleration
scheme, the Capture and Acceleration Scenario (CAS) [7] has been proposed. Results were
obtained in a Standard Gaussian Beam (SGB), i.e., a TEM00 mode Gaussian beam and the
CAS can work only when the laser field is strong enough [8]. We notice that, in order to
extract as much energy as possible while minimizing the undesirable effects often associated
with high peak power (e.g., self-focusing and optical damage), the radial intensity distribution
of real ultra-high intensity laser beam is always of a flat-topped profile, i.e., a distribution
which is nearly uniform over the central region and reducing smoothly to zero [9]. How to
describe this type of laser beam is an important question. During the past two decades,
much effort has been made in this direction, but difficulties still exist. Gori proposed a novel
approach to the description of one electromagnetic field component for Flattened Gaussian
Beams (FGBs) [10]. Its attractive advantage is that it can be expressed as a finite superposition
of suitably weighted Laguerre-Gaussian (LG) beams. Because LG beams are eigen solutions
of the paraxial wave equation, thus, the evaluation of the field across any plane z can be

(∗) E-mail: wpx@fudan.edu.cn

c© EDP Sciences
Article published by EDP Sciences and available at http://www.edpsciences.org/epl or http://dx.doi.org/10.1209/epl/i2005-10387-4

http://www.edpsciences.org/epl
http://dx.doi.org/10.1209/epl/i2005-10387-4


212 EUROPHYSICS LETTERS

done in an exact and simple way by using the propagation law for LG beams [11–13]. What
Gori concerned about in his paper is the distribution of light intensity and obtaining one main
transverse component, i.e. the electric field component is enough. We know that, simply from
one electric field component, it is hard to obtain all other five electromagnetic field components
which satisfy Maxwell equations. Normally, ∇ · E = 0 and ∂B/∂t = −∇× E are adopted to
obtain the analytical expressions of other five components, but solving them beyond a plane
wave is almost impossible even if under paraxial approximation, especially for a pulsed laser
beam. However, the exact expressions of all six electromagnetic field components of the field
are needed for theoretical applications such as using 3D simulation to study the interaction
between laser field and charged particles. Following the method introduced by Gori due to
the same form of the wave equations in vacuum, we obtain a similar expression of the vector
potential and derive all six electromagnetic field components of FGB in the Lorentz gauge. In
acceleration experiments, FGB are commonly focused by an off-axial parabolic mirror, thus
we derive all six electromagnetic field components of the focused FGB. They are analytically
expressed and are therefore practical for many applications. And, we investigate the phase
velocity distributions of the field near the focus of the focused FGBs propagating in vacuum.
Using 3D test particle simulations, we further confirm that the CAS is still valid in this
flat-topped laser beam.

Here we enact the vector potential A (Ax, Ay = 0, Az = 0) of a FGB but not the electric
field as ref. [10]. Due to the same form of the wave equations in vacuum, following the
method introduced in ref. [10], the expression of the vector potential component Ax can also
be expressed as the same form

Ax = A0
wN (0)
wN (z)
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[
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in which f(η) = exp[−(η/cτ)2] is the form factor of the laser pulse with τ being the pulse
duration, η = z − ct, k = 2π/λ the laser wave number. Ln is the n-th Laguerre polynomial,

and the c(N)
n coefficient is defined as c(N)
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coefficient. The parameters wN (z), RN (z) and ϕN (z) are given by wN (z) = wN (0)[1 +
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N + 1 is the waist size of all LG beams and w0 is the

waist size of the FGB.
For an optical system consisting of one thin converging lens with focal length f placed in the

input plane and the output plane at a distance z beyond the lens, the ABCD matrix [13] will be
given by the product of the matrices corresponding to the thin lens and free propagation; it is
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Then we can get that the focused FGBs have the same form as eq. (1), but the param-
eters wN (z), RN (z) and ϕN (z) are replaced by wN (z) = |A|wN (0)(1 + G2)1/2, RN (z) =
AB 1+G−2

1+BC(1+G−2) and ϕN (z) = tan−1G, where G = B
A

2
kw2

N
(0)

, A, B and C are the elements of
the pertaining ABCD matrix. For convenience, eq. (1) can be rewritten as

Ax = AN (r, z, t)LN (r, z)f(η), (3)



W. Wang et al.: Field description and electron acceleration etc. 213

where
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For a pulsed laser beam polarized along the x-direction and propagating along the z-axis,
the vector potential A and the scalar potential Φ can be assumed of the form [14]

A = f(η)Λx(x, y, z) exp[ikη]êx, Φ = f(η)Γ(x, y, z) exp[ikη], (11)

where êx is the unit vector representing the laser polarization direction. If the Lorentz gauge
is used, we can get Φ = (c∂Ax/∂x)/[ik − 2η/(cτ)2]. Once A is obtained, E and B can be
derived by E = −∂A/∂t − ∇Φ and B = ∇ × A. Then, the electromagnetic components of
the focused FGBs can be expressed as
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Fig. 1 – Intensity profiles of FGBs as a function of x for different values of N in the waist plane (a)
and focal plane (b). (a) The solid line represents the rect function; (b) the solid line represents the
circ function.
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Figure 1 shows the intensity profiles of FGBs for several values of N in the waist plane (a)
and focal plane (b). It can be seen that the curve is Gaussian for N = 0, the top of the curve
becomes more and more flattened in the waist plane as N increases. When N → ∞, the curve
will tend to be a rect function (solid line; as usual, rect(r) is defined as 1 if |r| ≤ 1 and 0
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Fig. 2 – Distributions of the minimum phase velocity (in units of c) near the focus of FGBs. (a) z = 0
plane with N = 0, (b) y = 0 plane with N = 0, (c) z = 0 plane with N = 8, (d) y = 0 plane with
N = 8. The dashed lines in (b) and (d) show the beam profiles.

elsewhere) in the waist plane or a circ function (solid line; defined as the Fourier transform
of rect function) in the focal plane. From fig. 1(b) it can be noticed that, when N > 0, the
intensity pattern in the focal plane has dark rings because of diffraction. In the following, we
select a representative FGB with N = 8 to study the characteristics of the flat-topped laser
beams. If the output beam of a given laser facility deviates from the 8th-order FGB, one can
easily change N accordingly to make a more specific study.

The effective phase velocity of the wave along a particle trajectory (Vϕ)l can be calculated
using ∂ϕ/∂t + (Vϕ)l · (∇ϕ)l = 0 [7], where ϕ is the phase of the wave, (∇ϕ)l is the phase
gradient along the particle trajectory. The minimum phase velocity, normally called the phase
velocity of the wave is Vp = −(∂ϕ/∂t)|∇ϕ|. Figure 2 shows the minimum phase velocity (in
units of c) distributions of the focused FGBs near the focus for N = 0 ((a) and (b)) and
N = 8 ((c) and (d)). The subluminous phase velocity region, namely, the phase velocity of
the wave is less than c, can be found in the focused FGB (N = 8), but it is markedly different
with that of SGB (N = 0). For N = 0, the subluminous phase velocity region emerges just
beyond the beam width w(z) (dashed line), and extends along the diffraction angle. While
for N = 8, the subluminous phase velocity region exists between r = w′

0 and 2w′
0, forming

a hollow column (there are other subluminous phase velocity regions outside 2w′
0, where the

field intensity is very small).
The physical mechanism underlying the CAS is that when an electron is captured, the ef-

fective wave phase velocity along the dynamic trajectory of the captured particle can approach
the light speed c, or even approach the speed of the particle [7]. Thus, the captured electron
can be kept in the acceleration phase of the wave for a long time, and gain considerable energy
from the laser field. In which, the longitudinal electric field of the laser beam is responsible
for the energy gain in CAS. The subluminous phase velocity region associated with the lon-
gitudinal electric field may form a natural acceleration channel [7, 8]. Our calculation shows
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Fig. 3 – Typical electron dynamics in (a)-(b) focused FGB and in (c)-(d) focused SGB. Laser field
intensity a0 = 80, beam width at the focus kw′

0 = 60, and pulse width ωτ = 500 are used for both
cases. Electron initial momentum P0 = 9 and 35, electron incident angle tan θ = 0.12 and 0.23 for
N = 0 and 8, respectively. (a) and (c), laser wave phase experienced by the electron; (b) and (d),
electron energy.

that the longitudinal electric field component (Ez) of focused FGBs with N = 8 is similar
to that of SGB (N = 0). “Does the CAS scheme still hold in a focused FGB?” is also what
we are concerned with in this letter. To answer this question we study the electron dynamics
in the focused FGB propagating in vacuum using 3D test particle simulation to solve the
relativistic Newton-Lorentz equation [7, 8], dP /dt = −e(E + v × B), where v is the electron
velocity in units of c, P = γv is the electron momentum in units of mec, and γ = (1−v2)−1/2

is the Lorentz factor. Simulations of electron dynamics in the focused FGB (N = 8) are
performed at laser intensity a0 = 80, where a0 ≡ eE0/meωc is a dimensionless parameter
measuring laser intensity, E0 denotes the electric field amplitude of the laser beam at focus, ω
the laser circular frequency, e and me the electron charge and rest mass, respectively. Other
parameters are beam width at the focus kw′

0 = 60, laser pulse width ωτ = 500, electron initial
momentum P0 = 35, electron incident crossing angle (relative to the laser beam direction)
tan θ = 0.23. Results are shown in figs. 3(a) and (b). For comparison, the electron dynamics
in SGB (N = 0) are also shown (figs. 3(c)-(d)). The SGB has the same a0, w′

0, and τ like the
FGB (N = 8). However, P0 and tan θ are optimized to be 9 and 0.12, respectively. Results of
these simulations indicate that CAS scheme still hold in a focused FGB.

In this letter, the characteristics of the focused FGB and electron dynamics in such a
field are studied. The analytical expressions of all six electromagnetic field components of the
focused FGBs are obtained. We found that for a focused FGB propagating in vacuum, there
exists a subluminous wave phase velocity region surrounding the laser beam axis. Although
there are marked differences between FGB and SGB, the vacuum electron acceleration scheme
CAS found in SGB, is also valid in the focused FGBs.
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